Classic Models

Kuan-Yu Chen (i & %)

2020/10/16 @ TR-313, NTUST



Review

e Query & Information Need

« Relevance

D

Irrelevant
Relev: Docur—-;l Irrelevant

Irrelevant

Irrelevant

Doc

Irrelevan

Releve
Documents

Documents

Documents
uments

\

rrelevant
Documents

Information needs

iPhone 12
spec.
price

Query= “apple”




IR Modeling

e Modeling in IR is a complex process aimed at producing a
ranking function

— Ranking function is a function that assigns scores to documents
with regard to a given query

 This process consists of two main tasks

— The conception of a logical framework for representing
documents and queries

« Representation

— The definition of a ranking function that allows quantifying the
similarities among documents and queries

« Ranking



Ranking

A ranking is an ordering of the documents that reflects their
relevance to a user query

Any IR system has to deal with the problem of predicting
which documents the users will find relevant

This problem naturally embodies a degree of uncertainty, or
vagueness

— Relevance!



Formal Expression

« An IR model is a quadruple [D,Q, F, R]
- D is a set of documents in the collection D = {dy, ..., d|p|}

- Q is a set of user queries Q = {qy, ..., q|q|}

- F is a function that translates the queries and documents into a
sort of representations

— R is a ranking function

B > . F(d)
R(F(d),F(q))

. F(q) —
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Index Term

Each document is represented by a set of representative
keywords or index terms

— An index term is a word or group of consecutive words in a
document

A pre-selected set of index terms can be used to summarize
the document contents

— Lexicon

However, it might be interesting to assume that all words
are index terms (full text representation)



Boolean Model



Boolean Model -1

Boolean model is a simple model, which based on set theory
(%25 :m) and Boolean algebra (ZEER{EY)

Documents are represented by a term-document incidence
matrix

— Terms are units

Queries specified as Boolean expressions
— quite intuitive and precise semantics

— neat formalism



Boolean Model -2

For documents

- d; = The way to avoid linearly scanning is to index the
documents in advance

- d, = The model views each document as just a set of words

- d3 = We will discuss and model these size assumption

44 d

- way 1 0 0
.g document 1 1 0
4 model 0 1 1
c% ~ avoid 1 0 0
_c% view 0 1 0
S discuss 0 0 1
> advance 1 0 0
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Boolean Model -3

For term-document matrix

— Each row associates with a term, which shows the documents it
appears in

— Each column associates with a document, which reveals the
terms that occur in it

44 d

way 1 0 0
document 1 1 0
model 0 1 1
avoid 1 0 0
view 0 1 0
discuss 0 0 1
advance 1 0 0

11



Boolean Model — 4

« Let’s query “way”

way = [1 0 0]

soanswer = d;

4 4 | di

way 1 0 0
document 1 1 0
model 0 1 1
avoid 1 0 0
view 0 1 0
discuss 0 0 1
advance 1 0 0



Boolean Model -5

N 143 3)
« Let's query non- way

~way ==[100]=[011]

~answer = d, & dj

4 4 | di

way 1 0 0
document 1 1 0
model 0 1 1
avoid 1 0 0
view 0 1 0
discuss 0 0 1
advance 1 0 0



Boolean Model -6

« Let’s query “document” and “model”

document A model = [110]JA[011] =[010]

~oanswer = d-

4 4 | di

way 1 0 0
document 1 1 0
model 0 1 1
avoid 1 0 0
view 0 1 0
discuss 0 0 1
advance 1 0 0



Boolean Model -7

b (19 o » 19 . »
« Let’s query "avoid” or "view

avoid Vview = [100]V[010] =[110]

~answer = d& d,

4 4 | di

way 1 0 0
document 1 1 0
model 0 1 1
avoid 1 0 0
view 0 1 0
discuss 0 0 1
advance 1 0 0



Boolean Model — 8

« Let’s query “avoid” and (“view” or non-"model”)

avoid A (viewV —model) =[100]A(J010]Vv =[011])
[100] A ([010]VI[100])

[100] A[110] |l a | oda | dg

[1 0 0] way 1 0 0
document 1 1 0

. answer = d1 model 0 1 1
avoid 1 0 0

view 0 1 0

discuss 0 0 1

advance 1 0 0



Boolean Model — Drawbacks

Retrieval based on binary decision criteria with no notion of
partial matching

— Data retrieval?

No ranking of the documents is provided (absence of a
grading scale)

Information need has to be translated into a Boolean
expression, which most users find awkward

— The Boolean queries formulated by the users are most often too
simplistic

The model frequently returns either too few or too many
documents in response to a user query 17



Probabilistic Model



The Probabilistic Model

« The probabilistic model captures the IR problem using a
probabilistic framework
— Tries to estimate the probability that a document will be
relevant to a user query
* P(Ryld;)

— Assumes that this probability depends on the query and
document representations only

« Hyper-links and other information

— The ideal answer set, referred to as Ry, should maximize the
probability of relevance

19



Formal Expression

R, be the set of relevant documents to a given query ¢

Eq be the set of non-relevant documents to query q
P(R;|d;) be the probability that d; is relevant to the query q
P(Eq |d;) be the probability that d; is non-relevant to q

The relevance degree can be defined as

P(qudj)
P(§q|d]-)

Sim(d-, q) =

Document Collection




Derivation

« By using Bayes’ rule

P(R, d;)
. _ P(Rqld;)  P(dj))  P(Rgd))
sim(d;,q) = P(R,d) PR, d) PR, d)
P(d)
P(R, d;)

_ PR TR PR PR PR
P(ﬁq_,dj)P R.) P(dj|ﬁq)P(§q) P(dj|§q)
P(R)

Constant for the given query ¢

21



Probabilistic Model - 1

« The probabilistic model can be computed by

P(Rqldj) _ P(dj|Rq)P(Rq)  P(dj|Rq)

sim(d;,q) = P(Ry4ld)) P(djIR)P(R,)  P(dj|Ry)

- P(d;j|R,) probability of randomly selecting the document d;
from the set R,

- P(R,) probability that a document randomly selected from the
entire collection is relevant to query

- P(d;|R,) and P(R,) are analogous and complementary

22



Probabilistic Model — 2

« We make the Naive Bayes conditional independence
assumption that the presence or absence of a word in a
document is independent of the presence or absence of any
other word

P(d)]Rq) _ (Muiea; PO¥iIRe)) (Muiea, P(WilRy)
P(d;|Rq) (Hwiede(Wimq)) (Hwigdjp(wimq))

sim(d;,q) «

- P(w;|R) is the probability that the term w; is present in a
document randomly selected from R,

- P(w;|Ry) is the probability that w; is not present in a document
randomly selected from the set R,

— Probabilities with ﬁq: analogous to the ones just described

23



Probabilistic Model — 3

« Since we assume index terms follow the Bernoulli
distributions

P(Willfq) + P(V_Vi“Eq) =1
P(w;|R,) + P(w;|R,) = 1

« The probabilistic model can be translated to:

Sim(

,q) <

(iwiEde(Wl )(iwiGEde(wilRCI))
(: Wiede(Wt )(iwiedjp(wilﬁq))
(iwiede(Wz )(:wiedj(l - P(Wiqu)))
(_wiEdJP(Wi q)) (:wiedj(l - P(Wilﬁq)))

24



Probabilistic Model — 4

« Then, we take logarithms:

(HwiEd,-P(Wi|Rq)) (Hwied,- (1 - P(Wi|Rq)))
(Hwiede(Wimq)) (Hwiedj (1 ~ P(Wilﬁq)))

= tog [ | PwilRg) +1og [ (1-P(wilr,))

Sim(dj, q) <

wi€d; wi&d;
—log 1—[ P(w;|Ry) — log 1_[ (1 — P(Wi|§q))
wi€d; Wi&d;j

25



Probabilistic Model — 5

« By using a trick

sim(dj,q) « log 1_[ P(Wiqu) + log 1_[ (1 - P(Wi|Rq))

WiEdj

Wiedj

—log 1_[ P(w;|R,) — log 1_[ (1 —P(wi|ﬁq))

WiEdj

Wiedj

= log 1_[ P(wi|Rq) + log l_[ (1 _P(Wiqu))

WiEdj

wi&d;

—log | | P(Wi|§q) — log 1_[ (1 _P(Wilﬁq))

+log

+log 1_[

WiEdj

(1 —~ P(wi|Rq)) — log 1_[ (1 - P(Wi|Rq))
(1 —~ P(wi|§q)) — log 1_[ (1 - P(wilﬁq))

26



Probabilistic Model —

- Consequently, we can obtain

Sim( q) X log 1_[ P(W1|Rq) + log 1_[ P(Wl|Rq)

wi€d; w;&d;
—IOg P(W1|Rq) lOg 1_[ P(Wl|§CI))
v&}eJdJ wi&d;
+log (1 - P(Wi|Rq)) — log (1 - P(Wi|Rq))
+log (1 — P(Wimq)) — log (1 — P(Wilﬁq))
P(wi|Rq) Constant for

= log 1_[ T P(Wi|Rq) + log l_[ P(W1|Rq) any document
WiEdj

d,
1—P(w;|R
+log 1_[ (Wi| q) logl_[ P(W1|Rq)

J
WiEdj P(W1|RQ)

27




Probabilistic Model — 7

« So, we have

P(w,|R 1 — P(wi|R
Slm(d,CI) oC lOg 1_[ (Wll Q) + lOg (Wll q)
WEdjl

- P(Wi|Rq) wied; P(Wimq)

o Further, lets make an additional simplifying assumption that
we only consider terms that occurring in the query

— This is a key expression for ranking computation in the
probabilistic model

— Here, we derive the Binary Independence Model

1- P(Wimq)
P(Wimq)

P(w;|R
Sim(d-,q) e z log ] —(P(l\!v-rfz ) + log
i[™q

WiEdj&WiEQ

28



How to Estimate? -1

P(w;[R 1 — P(w;|R
Sim(d-,q) x Z log _(W‘| "1) + log ('Wil q)
1— P(w;|Ry) P(w;|R,)

wied ;&w;Eq
e For agiven query, if we have

— N be the number of documents in the collection

— n; be the number of documents that contain term w;

- R, be the total number of relevant documents to query q

— 17 be the number of relevant documents that contain term w;

_ Relevant Non-relevant All Documents
—1;

Documents
that contain w; i L i

Documents

that do not contain w; Rg—m  N—m—(Rg—7) N —mn;

All documents Rq N — Rq N



How to Estimate? — 2

« The probabilities can be estimated by:

P(W1|RQ) _ R

Documents

q that contain w;
. . — 71 Documents o e — 7 -1,
P R — L L that do not contain w; Rq =i N —=n; = (Rg =7) M=
Wil%a) T N TR
q All documents R, N —R, N

« Then, the equation for ranking computation in the
probabilistic model could be rewritten as

P(w;|R 1—P(w;|R
sim(d;, q) « Z log (wy q) + log (Wil q)

i 1 — ng —n
R, N —R,
= Z log T + log =T,
WiEdj&WiEq B R_C[ N — RC[
( 4] N—Rq—ni+ri)
Rq — 71 n;g —r 30

WiEdj&WiEq



In Practice-1

 For handling the zero problem in the denominator, we add 0.5
to each of the terms in the formula

— Here, the Robertson-Sparck Jones Equation is derived

sim(d;, q) « Z

WiEdj&WiEC[

Ti+0.5 N—Rq—ni+ri+0.5
°9 Rq—Ti+0.5 ni—ri+0.5

_ Relevant Non-relevant All Documents
—1;

Documents
that contain w; " i n;
Documents
: R, —r; N—n,— (R, —r1; —n.
that do not contain w; a U n — (Rg — 1) N —mn;
All documents Rq N — Rq N

31



In Practice -2

o In real case, it is hard to obtain the statistics of R, and r;

— Ground truth?

— A simplest way is to assume they are zero!

) (d ) z l Ti+0.5 N—Rq—ni+ri+0.5
. o< .
UG 4 "I\R, — 1, + 05 n,—1,+05
WiEdj&WiEq
_ Z , N—-—n;+0.5
- °9 n; + 0.5
W;€Ed;&W;i€Eq
T T R
Documents

that contain w; i =T i

Documents
, R, — N—n;—(Rg—1; — N
that do not contain w; T ! i = (Rg = 71) N—mn

All documents Rq N — Rq N
32



Pros and Cons

. PwilRy) . 1-r(wilRy)
Slm(d'; CI) X ZwiEdj&Wieq log 1—P(Wi|Rq) T log P(Wi|ﬁq)

Ti+0.5 N—Rq—ni+ri+0.5
x Z log\ g— ' _
q T'i+0.5 n; Ti+0.5

Wi€d j&wWi€Eq

_ z l N—n;+ 0.5
B °9 n; + 0.5

wi€dj&w;E€q

« Advantages:

— Documents can be ranked in decreasing order of probability of
relevance

« Disadvantages:
— need to estimate P(w;|R,)
 Only approximation can be calculated
— method does not take “term frequency” into account

— the lack of document length normalization

 The longer the document, the larger the score?

33



Overlap Score Model



Term Weighting -1

« The terms of a document are not equally useful for describing
the document contents

— There are index terms which are vaguer

— Stop words!

« There are (occurrence) properties of an index term which are
useful for evaluating the importance of the term in a
document

— For instance, a word which appears in all documents of a
collection is completely useless for retrieval tasks

— However, deciding on the importance of a term for
summarizing the contents of a document is not a trivial issue

35



Term Weighting — 2

« To characterize term importance, we associate a weight

k; ; > 0 with each term w; that occurs in the document d;
— If w; that does not appear in the document d;, then k; ; =

- The weight k; ; quantifies the importance of the index
term w; for describing the contents of document d;

« These weights are useful to compute a rank for each
document in the collection with regard to a given query

36



Formal Expression

e w; be an index term and d; be a document
o IV ={wy,...,w)y} be the set of all index terms

e k; ;> 0 be the weight associated with w; and d;

— For dictionary terms that do not occur in the document, this
weight is zero

V d]-
W2 ¥ ko
Wy *K v,

37



Term Frequency -1

« The value of k; ; is proportional to the term frequency

— Luhn Assumption

— The weights k; ; can be computed using the frequencies of
occurrence of the term within the document

ki,j —_ tfi,j

 This is based on the observation that high frequency terms
are important for describing documents

— The more often a term occurs in the text of the document, the

higher its weight

38



Term Frequency — 2

 Several variants of tf weight have been proposed

Binary {0,1}
Raw Frequency tfi;
Log Normalization 1+ log,(tf; ;)
o tfi
Double Normalization 0.5 0.5+ 0.5
max;tf; j
o tfi
Double Normalization o o+ (1—0)—————
max;tf; i




Inverse Document Frequency -1

- Raw term frequency as above suffers from a critical problem

— All terms are considered equally important when it comes to
assessing relevancy on a query

— In fact certain terms have little or no discriminating power in
determining relevance

- An immediate idea is to scale down the term weights by
leveraging the document frequency of each term

— Document Frequency df;: the number of documents in the
collection that contain the term w;

40



Inverse Document Frequency — 2

« Denoting as usual the total number of documents in a
collection by N, we define the inverse document frequency
of a term w; as follows

_ N
idf; = logd—f_
l

— The idf of a rare term is high, whereas the idf of a frequent
term is likely to be low

- idf is used to reveal the term specificity

41



Inverse Document Frequency -3

o Five distinct variants of idf weight

Unary

Inverse Frequency

Inverse Frequency Smooth

l 1+N
09 ni

Inverse Frequency Max

max;(n;
log <1 +—l( )

)

Probabilistic Inverse
Frequency

42



TF-IDF

We now combine the definitions of term frequency and
inverse document frequency, to produce a composite weight
for each term in each document

TEF — IDFL] = tfi,j X ldfl

- TF — IDF; ; assigns to term w; a weight in document d;

e TF — IDF; ; will be higher when w; occurs many times within a
small number of documents

o It will be lower when the term occurs fewer times in a document,
or occurs in many documents

o It will be the lowest when the term occurs in virtually all
documents (idf; = 0)

43



Overlap Score Model - 1

o At this point, we may view each document as a vector with
one component corresponding to each term in the dictionary

— The weight for each component is determined by its

TF — IDF;

— For dictionary terms that do not occur in the document,

this weight is zero

> kl,j

=N

d;

» TF — IDF,

>k, ™

~* TF — IDF,

wkyy)i/

»TF — IDF|V|J
44



Overlap Score Model - 2

« The score of a document d; is the sum over all query terms of
the TF — IDF; ; weight of the query terms occurs in d;

sim(q,d;) = z TF — IDF; ;

Wi€Eq

— Robertson-Sparck Jones Equation is a special case!

N —n; +0.5 1.

sim(d;,q) ~ z log( n -IfOS ) A v
w;€d;&w;€q l ' Wy » TF — IDF, ;
W =*TF — IDF, ;

w *TF — IDFyy, ;
v V1 s



Vector Space Model



The Vector Space Model -1

« Opposite to the overlap score model, we now present queries
as vectors in the same vector space as the document
collection

— In other word, documents and queries are all vectors, and the
weight for each component is determined by its TF — IDF

TF — IDFth r W, i TF — IDF, ;
TF — IDF, W, TF — IDF,
TF — IDF|V|rqr ' W|V| ! WTF — IDF|V|J

« The relevance degree between a given query and a document
can be computed by referring to the cosine similarity measure

- d;

Q)

l

Sim(q, dj) = a
j

Q0



The Vector Space Model -

- Similarity between a document d; and a query ¢

- Ifk;; > 0andk;; > 0, we have 0 < Sim(q, dj) <1

Sim(q,dj) = cos(0) =

Zw EVqu X k

QL QL

&L Q-.L

\[ZW er \/ZwiEVkiz,j

Why cosine similarity measure?
Why not Euclidean distance?

48



The Vector Space Model -3

« Recommended TF-IDF weighting schemes

Scheme Document Term Weight Query Term Weight
N tfiq N
1 tfi; X log— 0.5+ 0.5 ’ X log—
n; maxi(tfi,q) n;
N
2 1+tfi; log(l +—>
n;
N N
3 (1+tfl-,j)><log; (1+tfl-,q) xlog;

l

l

49



Pros & Cons

« Advantages
— Term-weighting improves quality of the answer set
— Partial matching is somewhat allowed

— Cosine ranking formula sorts documents according to a degree
of similarity to the query

— Document length normalization is naturally built-in into the
ranking

« Disadvantages

— It assumes independence of index terms

50



Discussion & Comparison



TF vs. IDF

The role of index terms

IR as a binary clustering
Relevance vs. Non-relevance

— Which index terms (features) better describe the relevant class
o Intra-cluster similarity (TF-factor)

o Inter-cluster dissimilarity (IDF-factor)

52



Comparisons

Boolean model does not provide for partial matches and is
considered to be the weakest classic model

There is some controversy as to whether the probabilistic
model outperforms the vector space model

— Bruce Croft suggested that the probabilistic model provides a
better retrieval performance

— Salton et al. showed that the vector space model
outperforms probabilistic model with general collections

53



Homework 1 - Vector Space Model



Homework 1 — Description.

o In this project, you will have
50 Queries

— 4191 Documents

« Our goal is to implement a vector
space model, and print out the
ranking results for all of the
queries

—_—
—_
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Homework 1 — Description..

The evaluation measure is MAP

The hard deadline is 10/29 23:59

Please submit a report and your source codes to the Moodle
system, otherwise you will get 0 point

You can get 13 points if you outperform the baseline

The report will be judge by TA, and you will get 1~2 points

You should

Upload your answer file to kaggle
o https://www.kaggle.com/t/7f84706b7b074267ae314582825tb725

« The maximum number of daily submissions is 20

« Your team name is ID Name
M123456_[& S5

56
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Homework 1 — Submission Format
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. FT911-368 FT911-3436 FT911-34 34 FT911-3409 FT911-336 FT911-2686
. FBI=3-37248 FRIE3-36865 FBIR3-3612 FBEIR3-3611 FEIR3-35836 FRIES:
. FBLE3-21907 FRIE3-21906 FBIR3-21 900 FBLE3-21 886 FRIE3-21 884 FBEL
016 FBIE3-58%3 FRL=3-58867 FBEI=3-58831 FBLE3-58752 FRL=3-58751




Questions?

kychen@mail.ntust.edu.tw
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